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We present measurements, over a wide range of Reynolds numbers (40 � Rλ � 470),
of grid-generated turbulence subjected to axisymmetric strain, and of the subsequent
evolution of the turbulence after the strain is released. The Reynolds number was
varied by the use of both passive and active grids and the strain was produced by
a 4:1 area-change axisymmetric contraction placed at various distances from the
grid. The time scale ratio of the turbulence to that of the mean strain varied from
approximately 10 to 30. The results show reasonable agreement with (linear) rapid
distortion theory (RDT) for the velocity variances but, contrary to linear theory, the
strained longitudinal, u1, spectrum peaked at significantly higher wavenumber than
the transverse, u2, spectrum. The mismatch in peaks increased with increasing Rλ and
at the highest Reynolds number (Rλ = 470) the peak of the strained u1-spectrum
occurred at a wavenumber 200 times greater than that of the u2-spectrum. As the flow
relaxed toward isotropy after the contraction, further evidence of the non-locality in
the flow field became apparent, with a second peak in the u2-spectrum emerging at a
similar wavenumber to the high-frequency peak in the u1-spectrum. The strain also
caused the longitudinal derivative skewness to change sign but as the flow evolved
after the contraction the derivative skewness returned to its typical value of −0.4.
We also show that single-point turbulence models are inadequate to describe the
relaxation of the turbulence towards an isotropic state in the postcontraction region.

1. Introduction
The way in which the mean strain affects the structure of turbulence is of importance

in understanding environmental flows such as flow over water and hills (Hunt &
Snyder 1980; Belcher & Hunt 1998), the flow in machinery and in wind-tunnel
contractions (Goldstein 1951; Batchelor 1953; Townsend 1954; Goldstein & Durbin
1980), and the flow over and around obstacles (Hunt 1973; Hunt & Carruthers 1990;
Hunt et al. 1990). The subject is also of fundamental interest since it highlights
the interaction of various turbulence scales. Straining generally distorts the large
eddies more strongly than the small ones (Kida & Hunt 1989; Tsinober 2001) and
understanding the ensuing scale–scale interactions is central to understanding the
turbulence dynamics itself.

Early on (Prandtl 1933; Taylor 1933; Batchelor 1953) it was realized that if the
mean strain is applied rapidly, inertia and viscous forces arising from the turbulence
may be neglected and the problem becomes linear. For this condition it may be
assumed that each spectral mode is acted on equally by the suddenly applied strain
and that they evolve independently (see below). For reviews of the linear theory,
known as rapid-distortion theory (RDT) see Savill (1987) and Hunt & Carruthers
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(1990). The requirements of RDT are stringent, and in any real flow the turbulence
time scale is comparable with that of the strain. Under these conditions nonlinear
effects may become significant. Surprisingly there has been very little experimental
work done on this problem at high Reynolds numbers, where the effects of the strain
are prevalent over a large wavenumber range but do not act uniformly on the various
scales. Because the eddy time scale decreases with decreasing scale size, the smaller
eddies respond ‘less rapidly’ than the large ones. Under these conditions we may
expect complex interplay between the different scales.

Here we address perhaps the most classical of the turbulence strain experiments, the
flow of turbulence through an axisymmetric contraction (Batchelor 1953; Batchelor
& Proudman 1954). For this flow there have been number of experimental studies
(Uberoi 1956; Pearson 1959; Mills & Corrsin 1959; Tucker & Reynolds 1968;
Reynolds & Tucker 1975; Warhaft 1980; Sjogren & Johansson 1998; Choi &
Lumley 2001) and some direct numerical simulations (Lee 1985; Lee & Reynolds
1985). Earlier, Ribner & Tucker (1953) had calculated the effects of axisymmetric
contraction on turbulence using RDT with an idealized spectrum. With the exception
of the recent work of Sjogren & Johansson (1998), the Reynolds number of the
turbulence subjected to the strain has been low, generally in the Taylor Reynolds
number (Rλ, defined below) range of 50 or less. For these low Reynolds numbers the
spectrum falls off rapidly and the flow is dominated by the energy-containing eddies.
There is little opportunity for spectral interaction over an appreciable wavenumber
range, and it is therefore not possible to examine nonlinear effects between various
scales. In particular long-range interactions are precluded. It is the objective of the
present work to address this issue by subjecting nearly isotropic turbulence over a
broad Reynolds-number range (40 � Rλ � 470) to axisymmetric contraction. By
systematically increasing the Reynolds number we will show that the distorted flow
departs more and more from linear theory and at the highest Reynolds numbers there
is a rich and complex interaction of the various scales.

Apart from the problem of how the turbulence is affected by the mean strain, there
is another question that deserves attention in its own right: for an anisotropic
turbulence field, how does the flow relax back towards the isotropic state? In
particular, information on the speed at which it occurs and the route it takes is re-
quired. There has been much work on this problem too (Rotta 1951; Launder, Reece &
Rodi 1975; Lumley & Newman 1977; Gence & Mathieu 1980; Newman, Launder &
Lumley 1981; Reynolds & Kassinos 1995; Chung & Kim 1995; Kassinos, Reynolds
& Rogers 2001). Here the emphasis has been on developing models, and these have
relied again on data from the low-Reynolds-number experiments cited above. In the
present work we will also examine the return to isotropy of the turbulence distorted by
an axisymmetric contraction. Because, as we will show, the turbulence field produced
at the exit of the contraction is complex, we might expect that the return to isotropy
will not comply with simple theory or single-point modelling. We will show this to be
the case.

2. Flow parameters and governing equations
2.1. Flow parameters

The parameters which govern the behaviour of the strained turbulence are the Taylor-
scale Reynolds number (Rλ ≡ 〈u2

1〉1/2λ/ν, where u1 is the longitudinal fluctuating
velocity component and the angle brackets denote time averaging, λ is the Taylor
microscale [〈U1〉2〈u2

1〉/〈(∂u1/∂t)2〉]1/2 with 〈U1〉 the mean velocity and ν the kinematic
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Figure 1. Schematic of experimental setup. Two different precontraction sections were used
(see text). Active and passive grids were used to vary the Reynolds numbers. a and b are the
immediate pre- and postcontraction regions respectively. e is the furthest downstream distance
location, 153 cm from the end of the contraction.

viscosity), the initial anisotropy and the time-scale ratio of the imposed strain rate
and that of the turbulence (to be defined below).

The total strain in the longitudinal direction, c, is defined as (Lee 1989; Pope 2000)

c ≡ exp

[ ∫ b

a

∂〈U1〉
∂x1

dt

]
(2.1)

where a and b denote measurement stations before and after the contraction (figure 1).
Owing to the symmetry, ∂〈U1〉/∂x2 = ∂〈U1〉/∂x3 = 0 and hence d〈U1〉/dx1 =

∂〈U1〉/∂x1. Also, dt = dx1/〈U1〉. Substituting these simplifications into (2.1) gives

c =
〈U1b

〉
〈U1a

〉 . (2.2)

Similarly it can be shown that the total strain in the x2 and the x3 directions is
1/

√
c for the axisymmetric case.

We define a non-dimensional time-scale ratio

S∗ ≡ 2Sk/〈ε〉. (2.3)

Here k is the turbulent kinetic energy 1
2
(〈u2

1〉+2〈u2
2〉) where u2 is the transverse velocity

fluctuation and the flow is axisymmetric (so that u2 = u3, u3 being the transverse
component orthogonal to u2), 〈ε〉 is the mean turbulence dissipation rate, determined
before the contraction by the expression 15(ν/〈U1〉2)〈(∂u1/∂t)2〉, and S is the strain
rate, defined by

S ≡
√

SijSij/2 (2.4)

where the Sij are the components of the second-order strain-rate tensor (Lee &
Reynolds 1985).

Clearly the quantity S is not constant through the contraction but changes owing
to energy decay as well as the varying strain. In order to parameterize the effect of
the contraction we define a strain rate S as

S =

√
3

2

〈U1a
〉

D

(
〈U1b

〉
〈U1a

〉 − 1

)
(2.5)
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where D is the length of the contraction. This is obtained using (2.4) and by linearizing
the strain rate for our geometry. It uniquely determines the relative rapidness of the

distortion of our flow. Further, we define a non-dimensional mean strain S
∗

by

substituting (2.5) into (2.3). With k/〈ε〉 measured at station a, we will use S
∗

to
compare the various flows studied here.

2.2. Equations governing the distortion

For incompressible homogeneous turbulent flows, the velocity fluctuations evolve as

Duj

Dt
= −ui

∂〈Uj 〉
∂xi

− ui

∂uj

∂xi

+ ν ∇2uj − 1

ρ

∂p′

∂xj

(2.6)

where the operator D/Dt is the material derivative following the mean flow.
The Poisson equation for the fluctuating pressure p′ = p(r) + p(s) + p(h) (where

p(r) is the rapid-pressure component, related to the mean velocity gradients, p(s) is
the slow-pressure component, related to the fluctuating velocity gradient, and p(h) is
the homogeneous pressure component, which is a solution to Laplace equation and
satisfies the boundary conditions for pressure; see Pope 2000) may be written as

1

ρ
∇2(p(r) + p(s) + p(h)) = −2

∂〈Ui〉
∂xj

∂uj

∂xi

− ∂2uiuj

∂xi∂xj

. (2.7)

The equation for the fluctuating vorticity with irrotational mean flow is

Dωj

Dt
= ωi

∂〈Uj 〉
∂xi

+ ν∇2ωj −
[
uk

∂ωj

∂xk

−
〈

uk

∂ωj

∂xk

〉]
+

[
ωk

∂uj

∂xk

−
〈

ωk

∂uj

∂xk

〉]
. (2.8)

Under the rapid-distortion theory (RDT) assumption, where the turbulent inertial
and viscous terms are neglected, the above equations simplify to

Duj

Dt
= −ui

∂〈Uj 〉
∂xi

− 1

ρ

∂p(r)

∂xj

, (2.9)

1

ρ
∇2p(r) = −2

∂〈Ui〉
∂xj

∂uj

∂xi

, (2.10)

Dωj

Dt
= ωi

∂〈Uj 〉
∂xi

. (2.11)

For this case it can be shown that the final state after the distortion depends only
on the total amount of strain and the geometry of the strain. Here, the Fourier
modes evolve independently (for detailed proofs see Ribner & Tucker 1953; Pope
2000). Hence, the energy-spectrum tensor components after the distortion can be
obtained explicitly as a function of the total distortion (which is axisymmetric and
irrotational and is uniquely identified by c) and the initial spectrum (Batchelor 1953;
Ribner & Tucker 1953; Lee 1986; Lee & Reynolds 1985; Lee 1989). From the energy-
spectrum tensor components one can obtain the Reynolds stresses and the energy
and dissipation spectra. For our flow c = 4, and RDT yields 〈u2

2b
〉1/2/〈u2

2a
〉1/2 = 0.45,

〈u2
1b

〉1/2/〈u2
1a

〉1/2 = 1.75 and kb/ka = 1.27.
For the rapid-distortion assumption to hold strictly for a given flow, the flow must

satisfy the condition Sτη 	 1, where τη (≡ (〈ε〉/ν)1/2 with ν the kinematic viscosity) is
the Kolmogorov time scale. This condition implies that the distortion is rapid even
when compared with the smallest scales (which are the most rapid scales present in
the turbulent flow field). A weaker condition is S∗ 	 1. Even this second condition is
apparently difficult to meet. For the flow presented here S∗ ∼ 10, and to have a flow
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for which S∗ ∼ 104, say, the contraction would have to be so short (a few millimetres),
that there would be secondary flows or other adverse effects. Thus we must see the
distortion as acting in a modulated way on the various scales of a flow when Rλ is
sufficiently high that there is a broad spectrum.

Returning to the full equation for uj (2.6), we may obtain a transport equation for
the velocity variances 〈uiuj 〉,

D〈uiuj 〉
Dt

= Pij + Rij − εij − ∂

∂xk

Tkij (2.12)

where Pij is the production term, Rij is the redistribution term, εij is the viscous-
dissipation term and Tkij is the Reynolds stress-flux term. These terms are defined in
the following way:

Pij = −〈uiuk〉∂〈Uj 〉
∂xk

+ 〈ujuk〉∂〈Ui〉
∂xk

, (2.13)

Rij =

〈
p′

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)〉
, (2.14)

εij = 2ν

〈
∂ui

∂xk

∂uj

∂xk

〉
, (2.15)

Tkij = T
(u)
kij + T

(p)
kij + T

(ν)
kij , (2.16)

where T
(u)
kij ≡ 〈uiujuk〉, T

(p)
kij ≡ ρ−1〈uip

′〉δjk + ρ−1〈ujp
′〉δik and T

(ν)
kij ≡ −ν∂〈uiuj 〉/∂xk .

Further, the following incompressible relationships for the flow through the
contraction can be used to simplify the above relations:

∂〈U1〉
∂x1

= −1

2

∂〈U2〉
∂x2

= −1

2

∂〈U3〉
∂x3

, (2.17)

∂〈Ui〉
∂xj

= 0 for j �= i. (2.18)

The whole flow field is homogenous in the transverse directions before and after the
contraction and in the contraction. Owing to this symmetry, 〈uiuj 〉 = 0 for i �= j and
〈u2

2〉 = 〈u2
3〉.

Using (2.17) and (2.18) and the symmetry conditions, the variance transport
equations in the contraction become

D

Dt
〈u2

1〉 = −2〈u2
1〉∂〈U1〉

∂x1

− 2ν

〈
∂u1

∂xk

∂u1

∂xk

〉
− 2

ρ

〈
u1

∂p′

∂x1

〉
− ∂

∂xk

〈u2
1uk〉 + ν

∂2〈u2
1〉

∂xk∂xk

,

(2.19)

D

Dt
〈u2

2〉 = 〈u2
2〉∂〈U1〉

∂x1

− 2ν

〈
∂u2

∂xk

∂u2

∂xk

〉
− 2

ρ

〈
u2

∂p′

∂x2

〉
− ∂

∂xk

〈u2
2uk〉 + ν

∂2〈u2
2〉

∂xk∂xk

.

(2.20)

The equation for 〈u2
3〉 is identical to (2.20) but with the index 2 replaced by 3.

The dominant effect on the variances is due to the mean strain. In the axisymmetric
contraction the mean strain rate in the x1 direction (∂〈U1〉/∂x1) is positive and hence,
owing to the net negative sign of the first term on the right-hand side of (2.19), the
variance 〈u2

1〉 decreases with evolution time. Similarly, owing to the net positive sign
of the mean strain term in (2.20) and in the corresponding equation for 〈u2

3〉, these
variances increase with evolution time.
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The turbulent kinetic energy equation (half the sum of the 〈u2
1〉 and 〈u2

2〉 equations
and the corresponding 〈u2

3〉 equation) is

Dk

Dt
=[〈u2

2〉 − 〈u2
1〉]∂〈U1〉

∂x1

− ν

〈
∂ui

∂xk

∂ui

∂xk

〉
− 1

2

∂

∂xk

〈uiuiuk〉− 1

ρ

〈
ui

∂p′

∂xi

〉
+

ν

2

∂2〈uiui〉
∂xk∂xk

.

(2.21)

The first term on the right-hand side of (2.21), which is the leading term, and gives
the effect of the mean strain on the turbulent kinetic energy, is positive indicating an
increase in net kinetic energy owing to the effect of the contraction.

Below we will be comparing our measurements with linear theory (RDT). We are
aware that RDT calls for strict homogeneity in the applied strain (Lee 1989; Pope
2000). Here we use it as a framework in which to report our measurements. In
order to determine the strained spectra we use a procedure similar to that of Ribner
& Tucker (1953) (see also Lee & Reynolds 1985; Lee 1989). We model the initial
energy-spectrum function E(κ) in accordence with Pope (2000) as

E(κ) = C〈ε〉2/3κ−5/3f
(κ
)fη(κη) (2.22)

where

f
(κ
) =

(
κ


[(κ
)2 + c
]1/2

)11/3

, fη(κη) = exp
(
−β

{[
(κη)4 + c4

η

]1/4 − cη

})
(2.23)

and κ is the magnitude of the wavenumber vector κ ≡ κi êi . The Kolmogorov constant
C is taken to be 1.5 and the model constant β is taken to be 5.2 (Pope 2000). The
two model constants c
 and cη are determined from the experimental data, as are 


(the integral length scale) and η (the Kolmogorov length scale).
By definition, for an isotropic turbulence field the energy-spectrum function and

energy-spectrum tensor components are related by

Φij(κ) =
E(κ)

4πκ2

(
δij − κiκj

κ2

)
. (2.24)

The one-dimensional energy spectrum, which can be measured using hot-wire
anemometry and Taylor’s hypothesis, is related to the energy-spectrum tensor
components by

Eij(κ1) = 2

∫ ∫ ∞

−∞
Φij(κ) dκ2 dκ3. (2.25)

The distorted energy-spectrum tensor components (starred quantities, below) for
an axisymmetric contraction can be derived from the expressions given in Lee (1989)
(see also Lee 1986; Lee & Reynolds 1985; Lee, Piomelli & Reynolds 1986) and the
use of (2.1), (2.2), (2.17) and (2.18):

Φ∗
11(κ

∗) =
E(κ)

4πc2

κ2
2 + κ2

3(
c−3κ2

1 + κ2
2 + κ2

3

)2
, (2.26)

Φ∗
22(κ

∗) =
E(κ)

4π

c(
c−3κ2

1 + κ2
2 + κ2

3

)2

[
c−3κ2

1 + κ2
3 − (1 − c−3)κ2

1κ
2
3

κ2
1 + κ2

2 + κ2
3

]
, (2.27)

where the distorted wavenumber vector κ∗ is related to the wavenumber vector κ in
the following way:

κ∗ =
κ1

c
ê1 + c1/2κ2 ê2 + c1/2κ3 ê3. (2.28)
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To calculate the distorted one-dimensional spectra the following relationship is
used:

E∗
ij(κ1) =

2

c

∫ ∫ ∞

−∞
Φ∗

ij(κ
∗) dκ∗

2 dκ∗
3 (2.29)

where κ1 is the wavenumber in the precontraction section.
In the work below whenever we compare the precontraction and postcontraction

spectra, the distorted one-dimensional energy spectra have been normalized in
such a way that they share the same wavenumber space as the original one-
dimensional energy spectra. Hence when the one-dimensional spectra are obtained
experimentally the local wavenumber space needs to be stretched out by a factor c

and, correspondingly, the spectra by a factor 1/c.
The model has two unknown constants, c
 and cη, and they are determined

from measurements of the kinetic energy, the dissipation rate, the integral length
scale and the Kolmogorov length scale. These flow quantities are calculated using
only the measurements of the longitudinal velocity fluctuations u1 at measurement
station a (figure 1). The model constants are then used to obtain an initial three-
dimensional velocity-spectrum function. Using the RDT relationships between the
spectrum functions and the isotropic-model spectrum function obtained above, the
distorted three-dimensional spectrum function is then computed. This is used to
obtain the u1 one-dimensional distorted spectrum, E∗

11(κ1). A similar procedure, based
only on transverse fluctuation (u2) measurements as input to the model spectrum, is
followed to obtain the u2 one-dimensional distorted-spectrum function, E∗

22(κ1), using
the isotropic flow quantities. We have verified that this method, in which the u1 and
u2 distorted spectra are independently estimated from their respective precontraction
parameters, gives qualitatively similar results to a true isotropic calculation.

Using (2.22), (2.26), (2.27) and (2.29) and the following relationships between the
longitudinal derivatives of the velocity fluctuations and the one-dimensional spectra,〈(

∂u1

∂x1

)2〉
=

∫ ∞

0

κ2
1E

∗
11(κ1) dκ1, (2.30)

〈(
∂u2

∂x1

)2〉
=

∫ ∞

0

κ2
1E

∗
22(κ1) dκ1, (2.31)

the small-scale anisotropy ratio, (∂u2/∂x1)
2/(∂u1/∂x1)

2 (which has the value 2 for
isotropic turbulence), can be calculated for this axisymmetric distortion to be around
7. (This value is slightly dependent on the form of the model spectrum in the
dissipation range.)

2.3. The equations governing the return to isotropy

For the postcontraction region between stations b and e (figure 1) the flow is
decaying-homogeneous anisotropic turbulence. The variance of the turbulent velocity
fluctuations evolves according to

d

dt
〈uiuj 〉 = R(s)

ij − εij, (2.32)

R(s)
ij ≡

〈
p(s)

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)〉
, (2.33)

εij ≡ 2ν

〈
∂ui

∂xk

∂ui

∂xk

〉
, (2.34)
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1

ρ
∇2p(s) = −2

∂2

∂xi∂xj

(uiuj − 〈uiuj 〉), (2.35)

where R(s)
ij is the slow-pressure rate-of-strain tensor (Pope 2000). For high-Reynolds-

number flows where the small scales are locally isotropic (we will show below that
after the contraction the small scales quickly become isotropic), the dissipation term
εij can be approximated as

εij =
2

3
〈ε〉δij. (2.36)

For the study of the return to isotropy (Pope 2000) it is convenient look at the
normalized anisotropy tensor bij, defined as

bij ≡ 〈uiuj 〉
2k

− 1

3
δij. (2.37)

Hence, (2.32) can be rewritten using (2.36) and (2.37) as

d

dt
bij =

〈ε〉
k

(
bij +

R(s)
ij

2〈ε〉

)
. (2.38)

The linear model for R(s)
ij proposed by Rotta (1951) is

R(s)
ij = −2CR〈ε〉bij (2.39)

where CR is Rotta’s constant.
By introducing a non-dimensional time coordinate s (ds ≡ 〈ε〉/kdt), (2.38) simplifies

to
d

ds
bij = −(CR − 1)bij. (2.40)

From (2.40) it follows that the normalized anisotropy ratios bij follow an exponential
path to isotropy. We will show that this model is inadequate, since CR is not constant
but varies with the initial conditions. Even for a specific flow CR is found to vary as
the flow evolves. A more general model would involve a nonlinear return to isotropy,
i.e. the return to isotropy would depend on quantities like bikbkj , bikbklblj etc. We
will show below that models which rely on a single-point description of the state of
turbulence are inadequate to describe our high-Reynolds-number experiments. Our
results suggest that any model which does not take into account the complete spectral
state of the turbulence will also be inadequate.

3. Apparatus
Measurements were performed in the low-background-turbulence open-circuit

square-section (40.7 × 40.7 cm2) wind tunnel (figure 1) described in Sirivat & Warhaft
(1983) (see also Warhaft 1980). Various passive and active grids were used to generate
turbulence over a large Reynolds-number range. The mesh lengths for the passive
grids were 2.54 cm and 5.08 cm. The active grid had a mesh length of 5.08 cm and
was operated in both synchronous and random modes (Mydlarski & Warhaft 1996).
First described by Makita (1991), the grid has triangular agitator wings on each
grid mesh. The bars are rotated and the direction of rotation is randomly switched,
resulting in a flapping motion. The motion of these wings enhances both the integral
scale and the turbulence intensity. The Reynolds number was varied from 100 to 470
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Figure 2. (a) The variation of mean velocity in the contraction for two typical cases.
(b) The variation of strain rate in the contraction. Squares, Rλ = 44, 2.54-cm-mesh passive
grid, short precontraction; circles, Rλ = 260, 5.08-cm-mesh active grid random mode, long
precontraction. The solid line are scaled error function fits to the data. The vertical lines are
the locations of the contraction. The abscissa is the downstream distance measured from the
contraction.

with the active grid and from 40 to 100 with the passive grids. For both grid types
the variation was caused by changing the mean wind speed.

Hot-wire anemometry was employed to measure the velocity fluctuations.
Simultaneous u1 and u2 fluctuations were measured using an X-wire array. The
wires were 3.05 µm in diameter and made of tungsten. The length-to-diameter ratio
was about 200. The probes were connected to Dantec 55M01 constant-temperature
bridges and were operated at an overheat ratio of 1.8. The signals were high-pass
filtered (typically less than 0.01 Hz) to eliminate low-frequency noise and low-pass
filtered to eliminate high-frequency noise. The data was digitized using a 12 bit A/D
converter, and typically 107 samples were taken. Further details of the experimental
procedure can be found in Mydlarski & Warhaft (1996, 1998).

An axisymmetric contraction of fixed 4:1 area ratio was used to produce the
axisymmetric distortion (Warhaft 1980). The contraction was 20.3 cm long and was
placed at two distances, nominally 100 cm and 200 cm from the grid (the exact
distances vary slightly with the grid used; see the table 1 caption). These setups are
referred to from here on as the short precontraction and the long precontraction. The
contraction profile was a seventh-order polynomial, which can be uniquely determined
using the constraints of zero slope, curvature and third derivatives at the end points
and the halving of the width along the length of the contraction (see Warhaft 1980).
Figure 2(a) shows the mean velocity profiles for a 2.54 cm mesh-length passive grid
with the short precontraction (Rλ = 44) and for the active grid in the random mode
with the long precontraction (Rλ = 260). The fits are scaled error functions. Note the
variation in mean velocity in the post- and precontraction region. Figure 2(b) shows
the derivative of the mean profile, ∂〈U1〉/∂x1, i.e. the variation of the strain rate in
the contraction.

Earlier in the course of measurements the presence of an acoustic mode was
detected in all the precontraction data for the short precontraction lengths. This
acoustic mode was dominant at the low-wavenumber region of the spectrum in all
the active-grid runs, but was weaker in the passive-grid experiments. In order to
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(a) Passive, M = 2.54 cm Passive, M = 5.08 cm

Short precontraction Short precontraction Long precontraction

Min Rλ Max Rλ Min Rλ Max Rλ Min Rλ Max Rλ

Rλa
38.2 43.8 47.3 72 34.9 52.1

xa/M 29.5 29.5 14.8 14.8 38.8 38.8
〈U1a

〉(m s−1) 3.43 5.18 2.40 4.81 2.47 4.80
〈u2

1a
〉1/2/〈U1a

〉(%) 3.36 3.32 5.94 6.19 2.53 2.70
〈u2

1a
〉1/2/〈u2

2a
〉1/2 1.14 1.05 1.06 1.00 1.00 0.97


a(cm) 1.26 1.11 1.57 1.74 1.95 2.09
λa(mm) 4.97 3.82 4.98 3.62 8.38 6.02
ηa(mm) 0.408 0.293 0.368 0.217 0.720 0.424
〈εa〉(m2/sec3) 0.121 0.459 0.183 1.53 0.0125 0.104
〈(∂u2/∂x)2〉
〈(∂u1/∂x)2〉 1.74 1.85 1.70 1.95 1.73 1.87

(b) Active, synchronous mode Active, random mode

Short precontraction Short precontraction Long precontraction

Min Rλ Max Rλ Min Rλ Max Rλ Min Rλ Max Rλ

Rλa
98.5 169.0 275 470 156 278

xa/M 16.2 16.2 16.2 16.2 38.3 38.3
〈U1a

〉(m s−1) 2.10 4.37 2.38 4.76 2.34 4.74
〈u2

1a
〉1/2/〈U1a

〉(%) 12.0 12.8 22.3 25.2 12.2 13.6

〈u2
1a

〉1/2/〈u2
2a

〉1/2 1.34 1.34 1.52 1.63 1.20 1.26

a(cm) 3.86 5.13 14.2 18.3 8.60 12.0

λa (mm) 5.88 4.55 7.76 5.86 8.24 6.47
ηa (mm) 0.301 0.178 0.238 0.137 0.335 0.197
〈εa〉(m2 s3) 0.41 3.38 1.05 9.46 0.268 2.23
〈(∂u2/∂x)2〉
〈(∂u1/∂x)2〉 1.58 1.83 1.49 1.75 1.65 1.85

Table 1. Various initial flow parameters for: (a) passive grids with mesh lengths M of 2.54 cm
and 5.08 cm and (b) the active grid with mesh length 5.08 cm. The short and the long
precontraction lengths for the passive grid were 94.25 cm and 201.9 cm, respectively. The
short and the long precontraction lengths for the active grid were 102.9 cm and 209.8 cm,
respectively (see figure 1; subscript a, above, refers to the precontraction position). Here the
integral length scale 
 ≡ 〈u2

1〉3/2/〈ε〉 and the Kolmogorov length scale η ≡ (ν3/〈ε〉)1/4. A
number of experiments were done at various speeds for each grid configuration. Here we only
list the minimum and maximum speeds.

eliminate the effect of the acoustic mode on the flow, the longer precontraction was
built (figure 1). It was found that the acoustic mode lost most of its energy after this
modification. Figure 3 shows the one-dimensional energy spectrum of the longitudinal
velocity component for the short and long precontraction lengths for the active grid
(random mode), where the acoustic problem was most severe. The spectra have been
scaled to match in the inertial range. (Note that their slope is less than −5/3. This is a
Reynolds-number effect (Mydlarski & Warhaft 1996).) The inset in figure 3 shows κ1

times the energy spectra, which gives the energy per bandwidth in wavenumber space.
The acoustic peak is almost negligible for the long precontraction case. Although
highly pronounced, we shall show below that the acoustic mode does not affect the
postcontraction results significantly, by comparing results from the short and long
precontraction-length runs.
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Figure 3. Noise comparsion: solid black line, random grid with short initial test section (RS),
Rλa

= 280; dashed grey line, random grid with long initial test section (RL), Rλa
= 160. Inset

shows the spectra multiplied by κ1. The slopes of the spectra are approximately −1.51.

Table 1 summarizes some typical flow conditions and characteristic values at
measurement station a, before the contraction (figure 1).

4. Results
4.1. Parameter variation

As discussed in section 2, for the particular contraction geometry used, our flow

is uniquely parameterized by S
∗
, Rλa

and the initial anisotropy 〈u2
1a

〉1/2/〈u2
2a

〉1/2.

Figure 4(a), shows the variation in S
∗
with Rλa

for the various flow conditions of table 1
(subscript a indicates the measurement station just before the contraction†). The
parameters were varied by using the different grids, different precontraction lengths

and different mean speeds. The variation in S
∗

with initial variance anisotropy
〈u2

1a
〉1/2/〈u2

2a
〉1/2 is shown in figure 4(b).

From figures 4(a) and 4(b) we can see the presence of two distinct groups in the
parameter space, a moderate strain-rate group comprising measurements made in the

† For some cases (1PS, 2PS, SS and RS; see figure 4) the measurement station a was as much as
25 cm before the contraction (see figure 6 for typical measurement positions). We note that in the
immediate precontraction region the flow speeds up and the variances increase. Ideally the position
a should be just before this region, which changes as a function of the flow conditions. Because
of the fixed location of the measuring ports we were unable to make fine adjustments of position
a for each experiment. In the figures we compare extrapolated measurements of various variance
ratios with those actually measured upstream of the contraction. Errors due to the inexact upstream
location will be discussed.
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Figure 4. Variation of S
∗

as a function of (a) Rλa
and (b) initial precontraction anisotropy: ◦,

2.54 cm passive grid, short precontraction (1PS); �, 5.08 cm passive grid, short precontraction
(2PS); �, active grid, synchronous mode, short precontraction (SS); �, active grid, random
mode, short precontraction (RS); ×, 5.08 cm passive grid, long precontraction (2PL); +, active
grid, random mode, long precontraction (RL).

short precontraction and a higher strain-rate group done with the long precontraction.

The lower strain-rate group spans an Rλa
-range of 40 to 470, over which S

∗
changes

from 10 to 15, and the higher strain-rate group spans a smaller Reynolds-number

range: Rλa
varies from 40 to 300 as S

∗
changes from 20 to 35. The lower strain-rate

group has some variation in initial anisotropy while the higher strain-rate group is

nearly isotropic. For a particular grid and precontraction length S
∗

increases with

Rλa
, but no clear dependence of S

∗
on initial isotropy is observed (figure 4b).

4.2. Effect of strain

Within the contraction there is a variation in strain rate (figure 2b). This, coupled
with the change in turbulence quantities as they evolve in the contraction causes a
variation in S∗ (2.3). Figure 5 shows S∗ in the contraction for Rλ = 44, passive grid,
and Rλ = 260, active grid. For both cases S∗ varies from 10 to 100. Although there is
approximately an order of magnitude variation, its value remains in an intermediate
range, far from the rapid limit (S∗�∞). The combination of the inhomogenity and
the intermediate value of S∗ strictly precludes the use of the form of the RDT as
employed here. Our objective is to use this theory as a reference framework only. The
strain rate when normalized with small time scales (Sτη, figure 5) was also determined.
Notice the large difference, of two orders or more in magnitude, between S∗ and Sτη,
indicating that the strain effects on the large and small scales are vastly different. It
is this difference, rather than the relatively weak variation in the strain rate, that we
believe gives rise to the interesting dynamics to be discussed below.

Figure 6 shows the change in the root-mean-square velocity fluctuations normalized
by 〈U1a

〉 as a function of the downstream distance x1, for various representative cases
(table 1). The strain causes the longitudinal (x1-direction) root-mean-square velocity
fluctuations 〈u2

1〉1/2 to be suppressed and the transverse (x2-direction) r.m.s. velocity
fluctuations 〈u2

2〉1/2 to be amplified (Uberoi 1956; Mills & Corrsin 1959; Warhaft
1980). The various pre- and postcontraction parameters are listed in table 2. From
figure 6 it can be determined that the precontraction ratio 〈u2

1a
〉1/2/〈u2

2a
〉1/2 varies
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Figure 5. Normalized strain rate as a function of the downstream distance measured from
the contraction. Open symbols, S∗; filled symbols, Sτη . Squares, Rλ = 44, 2.54-cm-mesh passive
grid, short precontraction; circles, Rλ = 260, 5.08-cm-mesh active grid random mode, long
precontraction. The vertical lines are the location of the contraction.

from the isotropic value of unity (figure 6b) to about 1.7 (figure 6f ) (see also figure
7c). We will examine the consequences of this below. Also note that for these plots
(made using dimensional downstream distances), the slow return to isotropy for
the passive grids at low Reynolds numbers (figures 6a, 6b and 6c) compared with
the higher-Reynolds-number active grids (figures 6d , 6e and 6f ). We will present
normalized data below.

In figure 7(a) the ratio of r.m.s. velocity fluctuations before and after the contraction
for the longitudinal fluctuations u1 and the transverse fluctuations u2 as a function

of S
∗

are shown (See table 2 for representative values). These ratios are also plotted
as functions of Rλa

and of initial anisotropy in figures 7(b) and 7(c) respectively. The
transverse r.m.s. ratio is around 1.5 and the longitudinal ratio is around 0.5 (with

a possible weak dependence on S
∗
). The ratios 〈u2

2b
〉1/2/〈u2

2a
〉1/2 and 〈u2

1b
〉1/2/〈u2

1a
〉1/2

appear to be independent of Rλa
and the initial anisotropy 〈u2

1a
〉1/2/〈u2

2a
〉1/2, except

perhaps for Rλa
� 100. The horizontal lines in the figure are the RDT limits of

1.75 and 0.45 for an initial isotropic spectrum (Ribner & Tucker 1953). Evidently
the longitudinal r.m.s. fluctuation ratio agrees well with the RDT prediction. The
agreement for the transverse prediction is less good, particularly for the low-strain
high-Reynolds-number experiments, the case where we might have expected the
largest departure. As footnoted earlier, some of the precontraction measurements
were made relatively far upstream of the physical contraction. In figures 7(a), 7(b)
and 7(c) we have extrapolated these to the immediate precontraction region, and the
results compare better with RDT.

Figure 8 shows a plot of the small-scale postcontraction (station b) anisotropy,
〈(∂u2b

/∂x1)
2〉/〈(∂u1b

/∂x1)
2〉, as a function of the precontraction Reynolds number Rλa

.
The inset shows the small-scale precontraction anisotropy ratio at station a. It is close
to the isotropic value of 2 for all cases. After the flow emerges from the contraction,
if the Reynolds number of the turbulence entering the contraction is high then the
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(2PL), Rλa

= 52; (d) active grid, synchronous mode, short precontraction (SS), Rλa
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(e) active grid, random mode, long precontraction (RL), Rλa
= 277; (f ) active grid, random

mode, short precontraction (RS), Rλa
= 470. Vertical lines represent the location of the

contraction.
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2b

〉/〈u2
2a

〉)1/2 and (〈u2
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1a

〉)1/2:
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anisotropy. Subscripts a and b refer to the pre- and postcontraction regions respectively.
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precontraction region (see text). The black symbols are from the actual measurements. The
horizontal lines are the RDT predictions for an initial isotropic spectrum. The symbols have
the same meaning as in figure 4.
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(a) Passive, M = 2.54 cm Passive, M = 5.08 cm

Short precontraction Short precontraction Long precontraction

Min R′
λ Max R′

λ Min R′
λ Max R′

λ Min R′
λ Max R′

λ

R′
λb

133 159 179 224 173 226

S
∗

7.28 7.12 6.33 7.02 17.4 18.9
〈u2

1b
〉1/2/〈U1b

〉(%) 0.400 0.400 0.586 0.617 0.379 0.379

〈u2
1b

〉1/2/〈u2
1a

〉1/2 0.487 0.489 0.445 0.440 0.612 0.586

〈u2
2b

〉1/2/〈u2
2a

〉1/2 1.31 1.24 1.29 1.17 1.56 1.49

kb(m
2 s2) 0.0192 0.0452 0.0318 0.130 0.0102 0.0427


′
b(cm) 15.6 14.5 22.0 17.1 36.3 30.2

〈ε ′
b〉(m2 s3) 0.0093 0.0362 0.0140 0.148 0.0154 0.0159

〈(∂u2b
/∂x)2〉

〈(∂u1b
/∂x)2〉 3.09 2.63 2.82 2.29 4.26 3.12

(b) Synchronous mode Random mode

Short precontraction Short precontraction Long precontraction

Min R′
λ Max R′

λ Min R′
λ Max R′

λ Min R′
λ Max R′

λ

R′
λb

202 254 289 372 327 412

S
∗

6.04 7.31 8.85 9.92 29.3 15.8
〈u2

1b
〉1/2/〈U1b

〉(%) 1.08 1.07 2.19 2.38 1.50 1.68

〈u2
1b

〉1/2/〈u2
1a

〉1/2 0.416 0.377 0.395 0.392 0.504 0.510

〈u2
2b

〉1/2/〈u2
2a

〉1/2 1.38 1.28 1.43 1.38 1.48 1.42

kb(m
2 s2) 0.0732 0.310 0.27 1.137 0.260 0.539


′
b(cm) 18.6 14.2 19.7 15.9 35.7 27.3

〈ε ′
b〉(m2 s3) 0.058 0.659 0.388 4.15 0.0756 0.884

〈(∂u2b
/∂x)2〉

〈(∂u1b
/∂x)2〉 2.18 2.02 1.94 1.99 2.14 2.04

Table 2. Various flow parameters and post- to precontraction ratios: (a) passive grids;
(b) active grids. The post- to precontraction velocity ratio was 4. Here 〈ε′

b〉 ≡
5ν(〈(∂u1b

/∂x)2〉 + 〈(∂u2
2b

/∂x)2〉) and 
′
b ≡ ( 1

3
〈u2

1b
〉 + 2

3
〈u2

2b
〉)3/2/〈ε′

b〉. The subscript b refers to
the immediate postcontraction region (figure 1).

effect of the strain on the small-scale isotropy is small. Thus for Rλa
� 150, the

postcontraction small-scale ratio is at the isotropic value of 2. The preferential effect
of the strain on the large scales is due to the non-rapidness of the distortion, and
the profound consequences for the future evolution of the flow will be examined
in the second part of the study. If the strain were instantaneous (rapid distortion)
then the small-scale derivative variance ratio would be approximately 7 for c = 4
(the exact value is slightly dependent on the form of the dissipation spectrum). The
maximum value obtained in this experiment was 4.25 (figure 8). In these experiments

we achieved comparatively greater variation in Rλ than in S
∗

but presumably if we

could effect a larger variation in S
∗

we would find comparable differences in the
response of the large and small scales to the strain rate, for a fixed Reynolds number.

Figure 9 shows the effect of the strain on the postcontraction Reynolds number.
Because the anisotropy produced by the strain can affect the dissipation scales, a
definition of the Taylor Reynolds number Rλ that incorporates both the x1 and x2

directional quantities is required. We define the immediate postcontraction Reynolds
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(a) Passive, M = 2.54 cm Passive, M = 5.08 cm

Short precontraction Short precontraction Long precontraction

Min Rλ Max Rλ Min Rλ Max Rλ Min Rλ Max Rλ

Meas. station Rλa
38.2 43.8 47.3 72 34.9 52.1

station a −S∂u1/∂x1
0.44 0.41 0.46 0.40 0.47 0.44

station b −S∂u1/∂x1
−0.014 −0.07 −0.13 −0.13 0.11 −0.08

station a K∂u1/∂x1
4.01 4.05 4.30 4.48 4.21 4.40

station b K∂u1/∂x1
5.14 5.20 6.07 5.83 5.28 6.30

station a K∂u2/∂x1
4.92 4.94 5.40 5.55 5.32 5.62

station b K∂u2/∂x1
5.39 5.61 6.46 6.70 5.28 6.34

(b) Synchronous mode Random mode

Short precontraction Short precontraction Long precontraction

Min Rλ Max Rλ Min Rλ Max Rλ Min Rλ Max Rλ

Meas. station Rλa
98.5 169.0 275 470 156 278

station a −S∂u1/∂x1
0.46 0.42 0.53 0.44 0.52 0.47

station b −S∂u1/∂x1
−0.25 −0.18 −0.04 0.03 −0.24 −0.11

station a K∂u1/∂x1
5.19 5.69 8.69 9.28 7.63 8.66

station b K∂u1/∂x1
10.7 8.79 11.4 10.4 15.1 13.5

station a K∂u2/∂x1
6.57 6.92 10.7 10.8 10.2 10.9

station b K∂u2/∂x1
12.6 12.2 18.3 14.5 19.9 18.8

Table 3. Skewness and kurtosis of velocity derivatives. (a) Passive grids; (b) active grids.

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 100 200 300 400 500

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 100 200 300 400 500
Rλa

Rλa

∂u2b——
∂x1

——————
∂u1b——
∂x1

�� � �
2

�� � �
2

Figure 8. Variation of post-contraction small-scale anisotropy with Rλa
. The inset shows the

precontraction small-scale isotropy. The symbols have the same meaning as in figure 4.



290 S. Ayyalasomayajula and Z. Warhaft

0

1

2

3

4

5

6

100 200 300 400 500
Rλa

R′λb—–
Rλa

Figure 9. Variation of R′
λb

/Rλa
(see text) with Rλa

. The symbols have the same meaning
as in figure 4.

number R′
λ as

R′
λ =

√
u2

1 + 2u2
2

3

λ′

ν
(4.1)

where λ′ is defined as

λ′ = 〈U1〉

√
u2

1 + 2u2
2

(∂u1/∂t)2 + (∂u2/∂t)2
. (4.2)

The ratio R′
λb

/Rλa
when plotted as a function of Rλa

(figure 9) approaches a limit of
approximately 1 for the highest Reynolds numbers. Note that this ratio is dominated
by the small scales, since the values of the r.m.s. velocities are approximately the same
for all the experiments described here (figures 7a and 7b). Thus figure 9 is similar to
figure 8.

We now turn to spectra. Figures 10(a) and 10(b) show one-dimensional u1 and
u2 energy spectra, E11(κ1) and E22(κ1), at low Reynolds number (Rλa

= 44) and low

strain rate (S
∗

= 12), before and after the contraction. The insets show the energy
spectra multiplied by κ1. Similarly, figure 11 shows energy spectra at high Reynolds

number (Rλa
= 260) but still with a relatively low strain rate (S

∗
= 24) and figure 12

shows energy spectra at low Reynolds number (Rλa
= 50) but now at a higher strain

rate (S
∗

= 32) than in figure 10. Also shown in figures 10, 11 and 12 are isotropic
model spectra in the precontraction region, and the corresponding distorted spectra
calculated using RDT. The postcontraction spectra have been plotted using a scaled
wavenumber (c times the postcontraction wavenumber, (2.28)), and the spectra have
been normalized by the same factor c. This is to ensure that we compare the energy
of the same wave modes in physical space. In all cases (figures 10, 11 and 12) the
strain suppresses the large scales in the longitudinal direction and amplifies them in
the transverse direction. (This is also evident for the r.m.s. values (figure 7).) From the
energy per bandwidth spectra (see the insets of figures 10, 11 and 12), we observe that
the spectrum-peak shifts to higher wavenumbers for the longitudinal case and does
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Figure 10. One-dimensional energy spectra, 2.54 cm passive grid, short precontraction (1PS),
Rλa

= 44, S
∗

= 12. (a) E11(κ1), inset κ1E11(κ1); (b) E22(κ1), inset κ1E22(κ1). Thin black line,
station a experiment; dashed line, station a model spectrum. Thick black line, station b
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following (equation 2.27)).
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Figure 11. One-dimensional energy spectra, active grid, long precontraction (RL), Rλa
= 260,

S
∗

= 24. (a) E11(κ1), inset κ1E11(κ1); (b) E22(κ1), inset κ1E22(κ1). Thin black line, station a
experiment; dashed line, station a model spectrum. Thick black line, station b experiment;
dashed-dotted line, station b model spectrum. The post-contraction wavenumbers have been
multiplied by c and the amplitudes of the spectra by 1/c.

not shift significantly for the transverse case. The shift in peak is more for the higher
Rλa

values: for Rλa
= 260 (figure 11) the peak of the u1-spectrum is at approximately

1000 m−1 while that of the u2-spectrum is at 20 m−1 i.e. their ratio is 50 : 1. On the one
hand, the model-spectra RDT calculations agree with the experimental observations



292 S. Ayyalasomayajula and Z. Warhaft

10–12

100 101 102 103 104 101 102 103 104

10–10

10–8

10–6

10–4

10–12

10–10

10–8

10–6

10–4

0

0.001

0.002

0.003

0.004

104103102101100 104103102101100
0

0.004

0.008

0.012

κ1 (m
–1)

E22(κ1) (m3 s–2)E11(κ1) (m3 s–2)

(a) (b)

Figure 12. One-dimensional energy spectra, 5.08 cm passive grid, long precontraction (2PL),
Rλa

= 50, S
∗

= 32: (a) E11(κ1), inset κ1E11(κ1); (b) E22(κ1), inset κ1E22(κ1). Thin black line,
station a experiment; dashed line, station a model spectrum. Thick black line, station b
experiment; dashed-dotted line, station b model spectrum. The post-contraction wavenumbers
have been multiplied by c and the amplitudes of the spectra by 1/c.

in terms of total energy for the longitudinal spectra and location of peak for the
transverse spectra. On the other hand, RDT does not predict the shift in the peak
of the longitudinal spectrum. It predicts that the longitudinal and transverse spectra
should peak at approximately the same wavenumber (figures 10, 11 and 12). RDT
also appears to overpredict the energy in the transverse strained spectrum. This is
partly due to the precontraction measurement location (see below).

Owing to the presence of the acoustic peak, the highest-Reynolds-number cases
(§ 2) have not been shown, but the trends are again consistent with the rest of the
data sets. Thus for Rλa

= 470 the peak of the strained longitudinal spectrum occurred
at a wavenumber 200 times that of the transverse spectrum.

The mismatch in the peak wavenumber between the observations and the RDT
calculations for the longitudinal spectra (figures 10, 11 and 12) is presumably due to
the non-rapidness of the distortion or the non-uniformity of the strain rate within the
contraction, or to a combination of both. We are inclined to think it is the former since,
as noted with reference to figure 5, the effect of strain on the large and small scales is
more salient than the variation of the strain rate in the contraction. (Viscous effects,
not included in our calculations, would tend to inhibit the energy of the small scales.
Our dissipation spectra (below) show the opposite effect: more energy is measured in
the small scales than inviscid RDT predicts.) Rapid distortion theory is predicated on
the assumption that turbulence–turbulence terms are negligible compared with the
interaction of the turbulence and the mean strain (compare (2.6) and (2.9)) and this
is clearly not the case in our experiments since S∗ is in the range 10 to 100 inside the
contraction (figure 5). If we consider the full equation for the evolution of ω2, (2.8),
the nonlinear term ω1∂u2/∂x1, because of the amplification of both ω1 and ∂u2/∂x,
will enhance ω2, producing additional u1 fluctuations. These fluctuations will occur
at higher wavenumbers because they involve correlations of turbulence–turbulence
derivative terms as opposed to turbulence–mean-strain terms. The significance of this
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Figure 13. One-dimensional energy spectra, 2.54 cm passive grid, short precontraction (1PS),

Rλa
= 44, S

∗
= 12. This is the same condition as shown in figure 10. Here the purpose is

to compare with the RDT predictions made by extrapolating the data to the immediate
precontraction region (see text). (a) E11(κ1), inset κ1E11(κ1); (b) E22(κ1), inset κ1E22(κ1).
Dashed line, station a extrapolated model spectrum; thick black line, station b experiment;
dashed-dotted line, station b extrapolated model spectrum. The postcontraction wavenumbers
have been multiplied by c and the amplitudes of the spectra by 1/c.

wavenumber shift, which is most pronounced at high Reynolds numbers (figure 11a),
will become apparent when we study the postcontraction evolution.

The mismatch between the RDT predictions and the energy of the postcontraction
transverse spectra (figures 10b, 11b and 12b) is mainly due to the precontraction
positioning of the turbulence probe, discussed in relation to figure 7. As for figure 7,
we have re-estimated the postcontraction spectra using RDT, by extrapolating the data
in the precontraction to the immediate precontraction region. The results are shown
in figure 13. The mismatch still remains but it is reduced considerably. However, there
is now a mismatch between the amplitudes of RDT and the observed postcontraction
longitudinal spectrum. Clearly these calculations are very sensitive to how the pre- and
postcontraction locations are defined. Nevertheless, althrough RDT is in reasonable
agreement with observations regarding amplitudes, it is always inconsistent with the
location of the peak wavenumber of the longitudinal spectrum.

Typical longitudinal and transverse dissipation spectra are shown in figure 14.
Their magnitudes are similar (figures 14a and 14b), indicating the tendency of small
scales to return to isotropy, as was previously observed (figure 8). Also shown are
the RDT calculations. Here, for the postcontraction region anisotropy is predicted
at all wavenumbers, including the dissipation scales. As noted above, inviscid RDT
under-predicts the high-wavenumber energy. Including viscosity in the calculations
would increase the disparity with the experiments.

To illustrate the scale dependence of the return to isotropy, we plot the ratio of
the longitudinal and the transverse one-dimensional spectra, E11(κ1)/E22(κ1), as a
function of wavenumber (figures 15a and 15b). These are the ratios of the measured
low- and high-Reynolds-number spectra, shown in figures 10 and 11 respectively. The
RDT calculations, also shown, are based on purely isotropic calculations that use the
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Figure 15. Energy-spectra ratio. (a) 2.54 cm passive grid, short precontraction (1PS), Rλa
=
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= 12; (b) active grid, long precontraction (RL), Rλa
= 260, S

∗
= 24. Thin black

line, station a experiment; dashed line, station a model spectrum. Thick black line, station b
experiment; dashed-dotted line, station b model spectrum. The post-contraction wavenumbers
have been multiplied by c and the amplitudes of the spectra by 1/c.

longitudinal fluctuation measurements as their input. The ratios provide insight into
the effects of the distortion as a function of wavenumber. A property of isotropic
turbulence spectra is that the ratios will increase with wavenumber in the near-to-far
dissipation range (provided the spectra fall off faster than algebraically; we used an
exponential), and this is observed for the model spectra and for the measurements
in the precontraction regions, figure 15. The slight upturn in the precontraction
measurements at the highest wavenumbers is due to noise. For the strained spectra,
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however, RDT predicts that E11(κ1)/E22(κ1) will increase with wavenumber (as before,
the individual spectra have to have a faster-than-power-law decrease and this is
satisfied by the form of the precontraction spectra), and the modelled results show
this increase (figure 15) for high wavenumbers. The predicted increase is evident too
in the measurements, but the ratio peaks and then begins to decrease at the highest
wavenumbers. The wavenumber at which the peak occurs provides an indication
of how far into the small scales the distortion is acting in the rapid sense. Beyond
the peak the ratio exhibits the same tendency as the isotropic precontraction ratios,
which is to decrease with increasing wavenumber. At these small scales the distortion
has apparently had little effect. Note that the peak occurs at a relatively lower
wavenumber (figure 15b) for the case farthest from rapid distortion (see figure 11),
as would be expected. Note also that the measurements show a shift with regard to
the RDT calculations. This is due to the fact that the longitudinal spectrum peaks
at higher wavenumbers than the RDT prediction (figures 10 and 11) and also to the
lower amplitude of the observed u2-spectrum compared with RDT.

The results of figure 15 show that the strain, in the rapid sense, protrudes into the
inertial subrange. It is instructive to determine a length scale at which the strain is
as rapid as the turbulence time scale (Kevlahan & Hunt 1997). Using dimensional
arguments, a length scale in the inertial range, 
s , is associated with the time scale
τs = 〈ε〉−1/3
2/3

s . For the strain and turbulence to have the same time scale, Sτs = 1.

The wavenumber κs corresponding to such a scale is (10π/3ν)〈q2
a 〉1/2R−2

λa
(S

∗
)3/2. The

wavenumbers corresponding to the integral length scale 
 and the Kolmogorov scale
η are κ
 = (10π/3ν)〈q2

a 〉1/2R−2
λa

and κη = (2π/ν)(5/3)1/4〈q2
a 〉1/2R

−1/2
λa

. Hence the ratios

of wavenumbers scale as (κs/κ
) ∼ (S
∗
)3/2 and (κs/κη) ∼ (S

∗
)3/2R−3/2

λa
. A typical

measurement condition is for a Reynolds number of around 260 with a strain rate

S
∗

of 24 (figure 15b). For this case the ratios are κs/κ
 ∼ 118 and κs/κη ∼ 0.03.
The peak in energy is around 20 m−1 and the dissipation peak is around 1000 m−1

(nominally around 30η). This puts κs in the range 900–2000 m−1 and is consistent
with the wavenumber at which isotropy effects are observed in the spectrum ratio
(figure 13b). Thus, using this criterion the distortion is fast compared with the energy-
containing scales as well as a significant part of the inertial-range scales. Further
insightful discussion on the range of validity of RDT may be found in Kevlahan &
Hunt (1997).

4.3. Relaxation of strained turbulence

The anisotropic turbulence created by the contraction relaxes towards isotropy
(figure 6). Earlier (following (2.39)) we introduced a non-dimensional time coordinate
s based on the integral time scale, k/〈ε〉. In figure 16 we plot the relevant longitudinal
and transverse components of the anisotropy tensor, b11 and b22 respectively, as a
function of s. The Rotta model predicts an exponential decrease to zero (see § 2.3) for
these quantities, and experiments suggest that the Rotta constant CR is in the range
1.8–2.6 (Hunt & Carruthers 1990). While an exponential function fits our data well,
we find that CR is not constant: for early times (figure 16a) its value is 5.5 while for
later times it decreases to 2.6 (figure 16b). It is important to note that the results are
independent of the grid type (active or passive) and also appear to be independent
of Reynolds number.

In figure 17 we have plotted CR as a function of the final value of s, defined as

sf =

∫ e

b

k

〈ε〉
dx1

〈U1b
〉 (4.3)
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Figure 17. CR (Rotta’s constant) vs. sf ; symbols have the same meaning as in figure 4.

where e is the farthest downstream location at which the measurement was made.
Here, CR was calculated for each individual measurement set (i.e. for a fixed Rλa

and

S
∗
). A variation in CR with evolution time, at least to sf ∼ 0.3, is observed. After

that the decrease is much slower and the results suggest an asymptotic value in the
range 2.6–3. (Note that the active-synchronous-grid results (sf ∼ 0.4) tend to show,
here and elsewhere, the greatest departure from the trends observed by the other grid
results (static grids and the random active grid). But we have found no good reason to
exclude them from our data set.) Our asymptotic value of CR ∼ 2.8 is consistent with
other high-Reynolds-number determinations of this constant (Sjogren & Johansson
1998), and is also consistent with figure 16, where at short times the value is 5.5 and
at long times around 2.8. Note that the asymptotic state occurs at a relatively modest
Reynolds number (Rλa

∼ 150, figure 17), but earlier work, cited in the introduction,
was done at a very low Reynolds number, where the ‘constant’ was still evolving.



Nonlinear interactions in high-Reynolds-number turbulence 297

10–10

100 101 102 103 104 100 101 102 103 104

10–9

10–8

10–6

10–7

10–4

10–5

10–9

10–8

10–7

10–5

10–6

10–3

10–4

0

0.002

0.001

0.003

0.004

104103102101100 10410310210110010–1
0

0.004

0.008

0.012

κ1 (m
–1)

E22(κ1) (m3 s–2)E11(κ1) (m3 s–2)

(a) (b)

Figure 18. One-dimensional energy spectra, downstream evolution, 2.54 cm passive grid, short
precontraction (1PS), Rλa
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black line, station b; dark grey line, intermediate station; light grey line, station e.
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Figure 19. One-dimensional energy spectra, downstream evolution, active grid, long

precontraction (RL), Rλa
= 260, S

∗
= 24. (a) E11(κ1), inset κ1E11(κ1); (b) E22(κ1), inset

κ1E22(κ1); black line, station b; dark grey line, intermediate station; light grey line, station e.

We also considered some second-order return-to-isotropy models by including a
quadratic term in bij. Here too the model constant had to be tuned as the Reynolds
number changed.

We now turn to the evolution of the spectra in the postcontraction region. Figures 18
and 19 give one-dimensional energy spectra for low and high Reynolds numbers
corresponding to the same initial conditions as the data presented in figures 10 and 11
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respectively. (In these and in the postcontraction spectra to follow, we have not
multiplied the wavenumber, κ1, by c (as in figures 10–15) since here we are not
comparing pre- and postcontraction spectra.) In both cases the longitudinal spectra
(figures 18a and 19a; the insets give the energy per bandwidth) show an increase in
energy as the flow evolves downstream, while the transverse spectra show the expected
decrease (figure 6). But the disparity in the wavenumbers at which the longitudinal and
transverse strained spectra (E11(κ1) and E22(κ1)) emerge from the contraction peak
(figures 10 and 11) causes them to undergo a complex evolution with downstream
distance. At low Reynolds number (figure 18) there is a broadening of E22(κ1) as the
high-wavenumber energy in E11(κ1) grows and interacts with the low-wavenumber
transverse fluctuations. At the higher Reynolds numbers (figure 19) this occurs too,
but the difference in the wavenumbers of the peak energy of the strained longitudinal
and transverse spectra emerging from the contraction is so great that as the flow
evolves, and the energy in the longitudinal fluctuation increases, a double peak
occurs in the transverse spectrum with the higher peak, at approximately the same
wavenumber as the peak in the longitudinal spectrum. Thus for both low and high
Reynolds numbers there is a complex nonlinear interaction between the longitudinal
and transverse fluctuations but it is most clearly manifest at high Reynolds numbers,
where the difference in the wavenumbers at which the strained longitudinal and
transverse spectra peak is most pronounced. Note that at the furthest downstream
location (station e) there is approximate isotropy in terms of the longitudinal and
transverse total energy (the integral of the spectra, figures 18 and 19), but as noted
the distribution in energy is quite different, the transverse spectrum exhibiting a much
broader distribution.

In order to compare further how the spectra vary with Reynolds number, in figure 20
we have plotted the energy per bandwidth spectra for the longitudinal and transverse
components (κ1E11(κ1) and κ1E11(κ1)), normalized by their respective peak energies,
for the furthest downstream location and for the full variation of Reynolds numbers
studied. Although these spectra are measured at the same downstream location, the
evolved time (in integral-time-scale units) is greater for the higher Reynolds numbers.
The longitudinal spectra broaden, as expected, with increasing Reynolds number. So
do the transverse spectra, and the composite plots clearly illustrate the emergence
of the double peak at high Reynolds number. It is remarkable that the progression
from low to high Reynolds numbers was obtained by using quite different grids. The
fact that the variation is so consistent suggests that the particular grid geometry does
not have a pronounced effect on the subsequent evolution of the flow. It seems to be
governed by the Reynolds number (and possibly to a small extent by the normalized
strain, which was varied over only a modest range).

The broadening of the transverse spectra and the emergence of the double peak
at high Reynolds number (figures 18, 19 and 20) indicate that there are long-range
nonlinear interactions occurring in the flow. They occur because of the modulated
distortion of the various scales, from almost rapid distortion for the largest scales to
essentially no distortion at all for the smallest scales. The effect is most pronounced
at high Reynolds number because of the broader initial spectrum.

The dissipation spectra corresponding to the energy spectra of figures 18 and
19 are shown in figures 21 and 22 respectively. Although the turbulent kinetic
energy decreases with downstream distance for the transverse component (Figures 6,
18b, and 19b), the dissipation rate increases, owing to spectral transfer to the high
wavenumbers. Both at low and high Reynolds numbers (figures 21b and 22b) the
transverse dissipation spectra show extended approximately power-law regions for
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Figure 23. Energy spectra ratio, downstream evolution. (a) 2.54 cm passive grid, short
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wavenumbers less than the peak wavenumber. This appears to be associated with the
broadening of the transverse spectrum itself. These figures (21 and 22) also show that
as the flow evolves the peaks of the longitudinal and transverse dissipation spectra
become nearly equal, indicating that the flow is approaching small-scale isotropy (see
also figures 23a and 23b).

The ratios of the evolving longitudinal and transverse spectra in the postcontraction
region are shown in figure 23. Here the return to isotropy, beginning with the small
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scales, is nicely exhibited by the dilation of the region with negative slope as the
flow evolves. As discussed above (figure 15), the ratio of these spectra decreases with
wavenumber in isotropic turbulence.

In figure 8 we showed that in the immediate postcontraction region the small scales
were isotropic for all but the very lowest Reynolds numbers. In figure 24 and its
inset we plot the postcontraction ratio of the transverse and longitudinal derivative
velocity variances, both as a function of s (see the discussion of figure 16) and of a
new variable sη, defined by

sη ≡
∫ x

xb

1

τη

dx

〈U1b
〉 (4.4)

where τη = (ν/〈ε〉)1/2 is the Kolmogorov time scale. Here the non-dimensional time is
based on the dissipation rather than the integral scale. Both plots in figure 24 reflect
the rapid return to isotropy of the small scales (note the logarithmic abscissa) even
for the low-Reynolds-number turbulence. The dependence on sη provides a slightly
better collapse than the dependence on s.

The evolution of the longitudinal derivative skewness S∂u1/∂x1
(defined as

〈(∂u1/∂x1)
3〉/〈(∂u1/∂x1)

2〉3/2) is shown in figure 25. (The transverse derivative skewness
is zero by symmetry and this was verified.) In isotropic turbulence the longitudinal
derivative skewness has a value of approximately −0.4 and exhibits a slow variation
with Reynolds number (VanAtta & Antonia 1980; Sreenivasan & Antonia 1997;
Gylfason, Ayyalasomayajula & Warhaft 2004). The precontraction value we observe
for the longitudinal derivative skewness is also close to −0.4 but the contraction
causes a rapid increase in its value and, as the flow emerges from the contraction,
the value becomes positive. Then as the flow returns towards isotropy in the straight
section of the tunnel, the skewness returns to its initial value of −0.4. The same
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effect was observed by Mills & Corrsin (1959) and more recently by Sjogren &
Johansson (1998). Negative skewness in turbulence, be it isotropic grid turbulence or
typical shear flows (jets, boundary layers etc.) is a manifestation of vortex stretching,
which allows for a cascade from the large to the small scales. Without the negative
skewness the cascade is inhibited. Clearly the dramatic change in the skewness implies
a change in turbulence structure. In an equilibrium flow the positive sign might signify
that vortex compression is dominating over stretching and that the flow consists of
predominantly tube-like structures rather than sheets (Townsend 1951; Betchov 1956;
Davidson 2004). It is not unreasonable to conjecture that the contraction causes the
vortex sheets to evolve into tubes and that as the strain is released the intercomponent
energy transfer allows for a relaxation back to the equilibrium state. Notice that there
is some overshoot: after the flow emerges from the contraction the skewness keeps
increasing for a short distance in the straight section, and this may be related to the
persistence of a mean strain in the postcontraction region (figure 2). Note also the
relatively good collapse of the various experiments at different Reynolds numbers
and different strain rates.

A typical set of normalized skewness spectra (multiplied by wavenumber to provide
information on the peak ‘energy’) for a low-Reynolds-number low-strain case is shown
in figure 26. The full spectrum becomes positive after the contraction and, as the
flow evolves, the lower wavenumbers become negative first, indicating that the larger
scales are restored before the smaller scales (relatively speaking; note that all the
‘energy’ of this derivative quantity resides at the higher wavenumbers). The skewness
spectra at higher Reynolds numbers behave in a qualitatively similar way.

Finally, figure 27 shows the evolution of the derivative kurtosis for the u1 and
u2 fluctuating components (K∂u1/∂x1

≡ 〈(∂u1/∂x1)
4〉/〈(∂u1/∂x1)

2〉2 and K∂u2/∂x1
≡

〈(∂u2/∂x1)
4〉/〈(∂u2/∂x1)

2〉2). There appears to be a bifurcation: the higher-Reynolds-
number active-grid results show high kurtosis after exiting the contraction and then
rapidly decline, while the lower-Reynolds-number results exhibit a lag, peaking at
an sη value of around 10. We think that the difference is due to the lack of data at
small sη for the high-Reynolds-number case (note the logarithmic abscissa). For these
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data we could not get close enough to the exit of the contraction to resolve small
sη values. We suspect that the high-Reynolds-number data would exhibit a rise for
small sη. Notice that the u1 and u2 derivative kurtosis measurements are qualitatively
similar, but the magnitudes of the transverse component are greater (as is observed
in isotropic turbulence and in shear flows; see e.g. Sreenivasan & Antonia 1997).

The derivative kurtosis is an indicator of internal intermittency, and the
postcontraction results suggest that the flow does become more intermittent. The
reason for internal intermittency is far from resolved, but traditional theories assume
that it is due to small-scale structures (e.g. Sreenivasan & Antonia 1997). For
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the postcontraction region, we believe that the amplification may be due to a
rearrangement of vortex structures by the mean strain.

5. Conclusions
The most significant finding of this experiment is that irrotational axisymmetric

strain, acting over a broad range of scales, gives rise to nonlinear interactions. Thus we
have observed that the strain shifts the peak of the longitudinal, u1, spectrum to high
wavenumbers relative to that of the transverse, u2, spectrum (figures 10, 11 and 12).
As the flow relaxes, after the strain has been removed, there is a multiscale interaction
between the various spectral components, with the result that at high Reynolds
number there is a complex double-peaked transverse spectrum, the high-wavenumber
peak corresponding to the peak in the longitudinal spectrum (figures 19 and 20).
Although most pronounced at the higher Reynolds numbers, there is evidence of
non-local effects even at low Reynolds number (figures 18 and 20). In hindsight, these
nonlinear effects are evident in the spectra of the low-Reynolds-number experiments
of Warhaft (1980). Yet because the Reynolds number was not varied, these effects
went unnoticed.

The measurements presented here are single-point, and we were unable to probe
the details of the multiscale long-range interactions between the various spectral
modes. However, by varying the initial conditions, we were able to determine that
our results depend neither on the anisotropy level of the prestrained turbulence nor
on the way the turbulence was generated. Thus, the precontraction anisotropy (based
on velocity r.m.s. ratios) was varied from 1 to 1.7 (figure 7c) without any significant
variation in the nature of the strained velocity field, and various passive and active
grids were employed, but here too the results were qualitatively similar, independent
of the grid type (figures 7 and 20). It might be argued that the nonlinearities
are due to anisotropy in the precontraction vorticity structure (not measured), yet
other experimental evidence (Antonia, Zhou & Zhu 1998) indicates that (passive)
grid turbulence produces a close-to-isotropic vorticity field. The qualitative similarity
between the active and passive grid results presented here suggests that the active grid
precontraction velocity structure is not vastly different from that of passive grids (apart
from being at higher Reynolds number). Further, we are inclined not to attribute our
results to the non-uniformity of the strain itself. We have shown (figures 2 and 5)
that although the strain rate varies within the contraction this variation is relatively
small. Thus, we believe that the complex postcontraction velocity structure is due to
the straining action as a function of wavenumber and is not strongly dependent on
the initial conditions or on the variation in strain within the contraction. Nevertheless
these issues require further study.

The strain causes a change in the sign of the velocity derivative skewness (figures
25 and 26) and increases the postcontraction velocity derivative kurtosis (figure 27).
These effects are thought to be due to the change in the turbulence structure (possibly
from sheets to tubes) by the straining motion and to the alignment of the structures
by the strain. As the flow evolves in the postcontraction region, the flow relaxes back
to ‘normal’ turbulence statistics, with a negative derivative skewness (∼ −0.4 ) and
a reduced derivative kurtosis. Constrained by our apparatus, our experiments were
done for moderate strain rates (10 � S∗ � 35, figure 4). Yet this appears to be the
most interesting range to study since it spans the wavenumber variation from rapid
straining of the large eddies to very weak strain effects on the small eddies (figures 15
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and 23). For the limits of very large or very small S
∗

the nonlinear effects observed
here probably would not occur.

Our experiments produce results that are at variance with classical RDT. This
is to be expected since the straining is not homogeneous and the distortion is not
rapid. Despite this we find reasonable agreement between simple RDT and integrated
quantities (figure 7). Using asymptotic analysis, Kevlahan & Hunt (1997) made the
point that RDT may be accurate for S∗ ∼ 1 because the straining motion modifies
the turbulence in such a way that the nonlinear terms are inhibited. This was based
mainly on their computation of integrated quantities such as the turbulence energy.
Our results suggest that nonlinear effects are very important in determining the
spectral dynamics of the velocity field. Further light on non-homogeneous flows such
as those in the present study may be shed by the implementation of non-homogeneous
RDT (Nazarenko, Kevlahan & Dubrulle 1999, 2000).

Our results also provide insight into why simple models are unable to describe
the return-to-isotropy process accurately (figures 16 and 17). We have shown that a
comparatively simple irrotational axisymmetric strained flow produces a very complex
flow field and that proper modelling will require spectral rather than single-point
closures.

We thank Julian Hunt and Stephen B. Pope for stimulating discussions and Armann
Gylfason for discussions, suggestions and help with the experimental setup. The work
was partly funded by the US National Science Foundation.
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